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Abstract

Schedule disruptions are commonplace in the airline industry with many flight-delaying events
occurring each day. Recently there has been a focus on introducing robustness into airline planning
stages to reduce the effect of these disruptions. We propose a recoverable robustness technique as
an alternative to robust optimisation to reduce the effect of disruptions and the cost of recovery. We
formulate the recoverable robust tail assignment problem (RRTAP) as a stochastic program, solved
using column generation in the master and subproblems of the Benders decomposition. We imple-
ment a two-phase algorithm for the Benders decomposition incorporating the Magnanti-Wong [21]
enhancement techniques. The RRTAP includes costs due to flight delays, cancellation, and passenger
rerouting, and the recovery stage includes cancellation, delay, and swapping options. To highlight
the benefits of simultaneously solving planning and recovery problems in the RRTAP we compare
our tail assignment solution with the tail assignment generated using a connection cost function
presented in Gronkvist [15]. Using airline data we demonstrate that by developing a better tail as-

signment plan via the RRTAP framework, one can reduce recovery costs in the event of a disruption.
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1 Introduction

The airline planning process is generally performed with the expectation that operations will be executed
as planned. Generally this is not the case, and delays and cancellation of flights are commonplace every
day. In August 2011 the on-time performance of the airline industry of Australia averaged 83.7% for
departures and 81.7% for arrivals, where on-time is defined as flights departing or arriving within 15
minutes of the scheduled time [7]. For the same period, Europe experienced an on-time performance of

82.48% [8] and the US had 79.34% [26] of all flights on time from reporting carriers. The operations of an
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airline are susceptible to outside influences such as weather, and in the long run a significant percentage
of flights will be disrupted.

It is becoming more accepted by the airline industry that airline operations will be affected by
some level of disruption and that this should be accounted for in the planning process. The considerable
additional cost associated with any delay has spurred an interest in robust airline planning. These robust
plans focus on incorporating features to improve operational performance in the presence of unforeseen

disruptions.

1.1 Proxy Robustness

A very popular approach for developing robust planning models is to identify a particular aspect of the
airline planning process that is a proxy for robustness. We call this class of robust planning models proxy
robust. The performance of these approaches depends on efficacy of the aspect capturing the desired
robustness goals and can vary across data sets. Furthermore, additions to the model (e.g. enlarging the
set of possible decisions, or introducing additional constraints) may render a particular proxy robust
approach less effective. There is, by definition of this class, no feedback between the planning stage and
the operations stage that could improve the robust solution potentially leading to an overly conservative
planned solution.

The general approach to airline planning involves defining a series of stages to be solved in a sequen-
tial order. These stages typically consist of, but are not limited to, the schedule design, fleet assignment,
aircraft routing, crew planning and passenger routing. To improve upon the solution quality and robust-
ness of this sequential process, there has been increasing interest in finding an integrated solution for two
or more stages. Cordeau et al. [11] integrates the crew scheduling and aircraft routing problems through
the use of short connections, and solves this problem by Benders decomposition. Ensuring that the short
connections are used by the same aircraft and crew improves the robustness by reducing the possibility
of delays spreading throughout the network, commonly called delay propagation. The Benders decom-
position approach to integrated planning is extended by Mercier et al. [22], who introduce the concept
of restricted connections, which are penalised if the two flights are serviced by the same crew and not
the same aircraft. Further integration using Benders decomposition is carried out by Papadakos [24],
with the integration of fleet assignment, maintenance routing and crew pairing.

To integrate the aircraft routing and crew scheduling problems, an iterative approach is proposed
by Weide et al. [32] and Dunbar et al. [12]. This approach is applied to handle the combined delay
interactions from the routing and crew connection networks with a focus on propagated delay. Weide
et al. [32] attempts to increase the amount of slack, excess connection time, between the restricted
connections to mitigate delay propagation. Dunbar et al. [12] explicitly measures the delay that would
be propagated along assigned flight routes, or strings, in the combined routing and crewing network,

and minimises this. Both Weide et al. [32] and Dunbar et al. [12] determine that the length of the
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connections is a contributing factor to the performance of an airline planning solution.

Integration of two or more airline planning processes has been shown to improve robustness, however
there have been many alternate methods proposed for individual planning stages. In the case of the
aircraft routing problem, Lan et al. [19] propose the use of flight re-timing to reduce delay propagation
and minimise the effect of disruptions on passengers. In practice, a general method of introducing
robustness into the aircraft routing problem is via key performance indicators, examples of such methods
are explained in Wu [33]. Borndorfer et al. [6] present an alternative to a traditional key performance
indicator method for the aircraft routing problem, more specifically the tail assignment problem, which
aims to find the aircraft routing with the lowest potential propagated delay. In [6] the probability of the
length of delay is explicitly modelled, and the expected delay is included in the objective function.

Within the airline planning problems there are a number of different characteristics identified that
can be exploited to improve operational performance. In the development of a robust airline schedule,
Ageeva [2] presents the idea of incorporating aircraft swaps to avoid the propagation of delay. Swapping
occurs at points when two aircraft are planned to be on the ground at the same airport at the same time,
with the swap allowing the higher valued route to continue on time. Eggenberg [13] presents both robust
and recoverable aircraft routing problems by optimising favourable characteristics of the model, such as
aircraft swaps [2], increased idle and passenger connection times, to improve recoverability with the use
of uncertainty feature optimisation. Kang [17] proposes a unique method for robust planning involving
decomposing the airline schedule into a number of different layers, partitioning the flights into layers by
their expected yield. A simple recovery algorithm is devised from this approach, where the highest layer
is rerouted first and the lowest layer has a higher delay and cancellation priority. These approaches are
attempting to provide options for the airline in the event of disruption, reducing the potential recovery
costs.

Some US airline networks are designed with a hub and spoke structure, where the majority of
the activity occurs at the hubs. Rosenberger et al. [28] exploits this particular network structure by
introducing the concept of hub isolation and short cycles. Limiting the number of aircraft that service
each hub in the network introduces possible recovery actions to isolate a disruption to a particular hub,
protecting all other flights. The ideas of Rosenberger et al. [28] are extended by Smith and Johnson
[30] to include the concept of “station purity”. This concept involves limiting the number of fleets
that can service each station, attempting to provide more recovery options, such as aircraft swapping
opportunities. The integration of this work with crew planning is demonstrated in Gao et al. [14],
providing station purity restrictions on each crew base to help ensure that each crew can return to base

in a disruption.
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1.2 Feedback Robustness

Conversely, other approaches incorporate this feedback via second-stage (recovery) decisions, and we call
this class feedback robust. Feedback robust approaches are a potentially superior method for reducing
the weighted recovery costs since it is possible to improve the planned solution with outcomes from
simulated recovery scenarios. Yen and Birge [34] present an example of such an approach solving a
robust crew scheduling problem using stochastic programming. In this model each subproblem describes
a disruption scenario, which evaluates the effect of the disruption on the propagated delay caused by
crew pairings.

Outside the airline literature, Liebchen et al. [20] have developed a concept called recoverable ro-
bustness with an application to railway transportation. This technique focuses on finding a planning
solution that is recoverable in a limited number of steps, or with limited effort. Liebchen et al. [20]
present the recoverable robust timetabling problem as a demonstration of this technique. The concept
of limited effort is related to the selection of a simple recovery algorithm and attempting to minimise the
number of changes made to the planned timetable in the recovery stages. In this work, the authors con-
trast recoverable robustness with robust planning, indicating that strict robustness can often be overly
conservative, requiring a planned solution to perform under all disruptions. A key feature of recoverable
robustness is recognising that in a disruption, recovery is required and the planned solution will need to
be changed in operations.

In this paper we present a model for the tail assignment problem in a recoverable robust framework,
attempting to develop a planning solution that is recoverable with limited effort. For the recoverable
robust tail assignment problem (RRTAP) we define limited effort as the lowest recovery cost with the
least number of required changes. Since this is a feedback robust approach, the quality of the planned
solution is dependent on the feedback provided from the recovery scenarios. In this respect, we extend
upon the recovery policies considered by Liebchen et al. [20] to include a full set of airline recovery
options, such as flight cancellations and delays and allowing for aircraft rerouting. The inclusion of these
recovery policies provides an accurate simulation of an airline operations control centre and produces
quality feedback for the planning problem. In our novel approach for the RRTAP we formulate a full
set of recovery options while combining the planning and recovery problems in a difficult mixed integer

program.

1.3 Integrating planning and recovery

The RRTAP attempts to improve the planned solution based on information from recovery scenarios as
a form of feedback robustness. In contrast, the proxy robust models incorporate robustness by focusing
on perceived beneficial characteristics to the planning problem. There is no guarantee that the selected

characteristic will improve robustness, thus can only be evaluated through experiments. By explicitly
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solving the recovery problem, the RRTAP it is not limited to specific actions to find the best recovery
solution to a given planned tail assignment. As a result, the RRTAP is a more sophisticated attempt
to improve recoverability by allowing feedback between the planning stage and an accurately simulated
recovery subproblem. The feedback provided by the evaluation of the recovery problem minimises the
expected recovery costs over a large range of scenarios. This approach is similar to the stochastic
programming approach applied to the crew pairing problem in Yen and Birge [34], however only a
limited set of recovery options are employed in the second stage. Omne of our contributions is the
implementation of a more complex recovery subproblem in the RRTAP which uses a full set of recovery
options, aircraft rerouting and delaying or cancelling flights. To the best of the authors’ knowledge this
two-stage approach, incorporating a full set of allowable recovery decisions, has not been applied to
airline optimisation. The resulting planned tail assignment solution will assign flights to aircraft which
will reduce the expected cost of flight cancellations and delays and aircraft rerouting.

There are a number of different techniques that are available to the airline operations control centre
to mitigate the effects of disruptions. These are generally in the form of flight delays, cancellations and
aircraft swapping [18]. Each of these recovery actions contribute a high cost, constructed with either
real or artificial costs, to the objective function of the minimisation problem. In addition to minimising
the use of these recovery techniques there is a focus on returning operations back to plan either within
a specified time period or as quickly as possible. A very good, recent review of the recovery literature
can be found in Clausen et al. [9].

Section 2 will describe the concept of recoverable robustness and how we apply it to the tail assignment
problem. This section includes a brief review of recovery literature and a description of the policies that
have been applied in our model. We also present the mathematical model for the recoverable robust tail
assignment problem in Section 2. A description of the techniques used to solve the RRTAP is provided
in Section 3. In Section 4 we present our numerical results based on airline data and in Section 5 we

report our conclusions.

2 The recoverable robust tail assignment problem - RRTAP

We define the tail assignment problem as the task of assigning routes to individual aircraft, ensuring that
all flights are serviced in a network while maintaining operational constraints. The RRTAP solves the
planning and recovery tail assignment problems simultaneously in a stochastic programming framework
to improve the recoverability of the planned solution. To accurately model the recovery problem, the
RRTAP employs a full set of recovery options and estimations of actual costs will be used. Also, the
planning tail assignment problem is generally modelled as a feasibility problem, which results in a large
number of feasible solutions. Therefore, the use of the RRTAP attempts to improve the expected recovery

costs of the planned solution without any additional planning costs.
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The tail assignment model for the RRTAP has been developed using a flight string formulation
introduced by Barnhart et al. [4]. The notation presented in Table 1 is used to describe the planning
and recovery stages in the RRTAP. A superscript s denotes the components of the model that relate to
the recovery stages and the disruption scenario s which they belong to, where s € S.

The flight schedule is described as a set of flights j contained in the set N, with each flight representing
a node in a connection network. Two flights that can be performed by the one aircraft are defined as
connected flights. A pair of connected flights are identified by i) the destination of the incoming flight
being the same as the origin of the outgoing flight; and ii) a minimum connection time, called the
minimum turn time, between the arrival and departure of the connected flights. The set of all feasible
connections, which represent the arcs of the connection network, is described by C' = {(i,7)]i,5 € N}.
A flight string, or flight route, p is defined as a sequence of connected flights to be operated by one
aircraft r. The decision variables y; and y," equal 1 when flight string p is operated by aircraft r for the
planning and recovery scenarios respectively. The cost of using flight route p for aircraft r is given by
¢, and ¢;" for the planning and recovery scenarios. The cost of a flight route for the planning variables
is dependent on the length of the connections contained in the flight route. In the recovery scenarios,
the cost of a flight route is defined by the delay on flights contained in the string which is incurred
during the recovery process. In the model constraints, the parameters a;;, and aj, are the coefficients of
the decision variables, y;, and y;" respectively, that capture whether flight j is included in string p. In
addition to describing a set of connected flights, the flight string also indicates end-of-day locations. All
end-of-day locations b, described as aircraft bases or overnight airports, used in the model are contained
in the set B. The parameters oy, and Obp equal 1 if flight string p terminates at base b for the planning
and recovery scenarios respectively. The RRTAP is a single day problem, so to maintain feasibility for
the following days’ schedule we enforce a minimum number of aircraft to terminate at each end-of-day
location b through the parameter M;. The sequence of flights and the end-of-day location described in
the flight string represents a column in the constraint matrix.

The tail assignment problem is the task of assigning flight routes or strings to individual aircraft.
Treating each aircraft individually in this problem requires an explicit definition of all aircraft  contained
in the set R. The set R contains all aircraft used in the model, and this is the same set used for the
planning and all recovery stages. We generate individual strings for each aircraft r, and additionally we
generate strings for the planning and each recovery stage contained in the sets P" and P*" respectively.
As a result we treat the sets P" and P*" as disjoint.

To solve the recovery tail assignment problem we implement the recovery techniques of flight delays
and cancellations while also allowing aircraft rerouting. Flight delays are represented by flight copies,
with each copy representing a different departure time of the same flight. All departure times for the
flight copies are later than the planned departure. Flight cancellations are included in the model through

the additional variables z7, that equal 1 if flight j in scenario s is cancelled, contributing a cost of d; to
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is the set of all scenarios s,

is the set of all aircraft r,

is the set of all strings p for aircraft r, the planning variables,

is the set of all strings p for aircraft r in scenario s, the recovery variables,

is the set of all flights j,

is the set of all flights j that depart before the first disrupted flight in scenario s,

is the set of all flights j that depart after and including the first disrupted flight in
scenario s,

is the set of all airports b an aircraft flight route can begin and terminate,

is the set of all feasible connections in the network, C' = {(¢, j)|¢,j € N U B},

is the minimum number of aircraft required to start the following days flights from
base b,

= 1 if aircraft r uses string p, 0 otherwise,

= the cost of flying aircraft » on string p,

= 1 if flight j is contained in string p, 0 otherwise,

= 1 if string p terminates at airport b, 0 otherwise,

= 1 if aircraft r uses string p in scenario s, 0 otherwise,

= the cost of flying aircraft r on string p in scenario s, this includes the cost of any
delayed flight on that string,

= 1 if flight j is contained in string p in scenario s, 0 otherwise,

= 1 if string p terminates at airport b in scenario s, 0 otherwise,

= the cost of cancelling flight 7,

= 1 if the flight j is cancelled in scenario s, 0 otherwise,

if flight j is assigned to aircraft r for planning
e;j' =Lle =0

but not for recovery in scenario s,

if flight j is assigned to aircraft r for recovery in scenario s

ejj =0,¢;, =
but not for planning,
ot . if flight 7 is not assigned to aircraft r for both planning
€, =0,€;, =

and recovery in scenario s,
weight applied to ej; in the objective function, the swap cost.

weight for each scenario s in the objective function,

Table 1: Notation used in the model.
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the objective. The addition of the cancellation variables allows the decision of an aircraft operating or
cancelling a flight in the recovery problem.

There are two main objectives for this problem: minimising the cost of recovery and minimising the
deviation from the planned solution. Since we are attempting to simulate the recovery process while
finding the planned solution, it is important to enforce non-anticipativity. All of the flights j in this
model are contained in the set IV, and to model non-anticipativity we define two partitions of this set,
Ns=Pre and Ns—Post N = Ns—Pre y Ns—Post The sets N*7P"¢ and N*7P°¢ include all of the flights
that depart before and after the first disrupted flight in scenario s respectively. To reduce the number of
deviations in the recovery solution we penalise any difference in the flight routes assigned to an individual
aircraft through the use of the variables ej:' and e;; . In the objective function the penalty g° is applied
for every flight j that is added to the planned route for aircraft r in the recovered solution for scenario
s, indicated by Ejj =0 and ej; = 1. It is possible to add and remove flights from an aircraft’s planned
route, however removing a flight is penalised through either cancellation or adding it to another route.
The objective of minimal deviation is similar to that presented by Thengvall et al. [31]. In the RRTAP
the recovery model includes constraints in the column generation master problem to track the amount
of deviation from the planned solution. This differs from the model presented in Thengvall et al. [31]
where the deviation from the planned solution is restricted through arc constraints in the subproblem.
The objective of Thengvall et al. [31] is to maintain the use of the planned connections in recovery,
whereas our model attempts to maintain the same flights for each aircraft. The second objective of the
RRTAP attempts to find a set of recovered solutions with limited effort; in our case this is defined as
the lowest cost recovery solution. As mentioned in Section 2, we will be using actual costs for the delay
and cancellation of flights in the recovery scenarios.

The recoverable robust tail assignment problem is formed by simultaneously solving the planning

and recovery problems within the one model. We describe the RRTAP as follows,
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(RRTAP) peper
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rER peEPST
Z ajply — Z ai,y, =0 Vs€ S VreRVje N, (8)
pePr pePsT
Z ajpYy — Z ai,yy = —€, VseSVreRVje€ Ns—post (9)
pePT pePsT

y, €{0,1} Vre R,Vpe P", (10)
y,  €{0,1} Vse€ S Vre R,Vpe P, (11)
z; €{0,1} Vse S VjeN, (12)
S+ >O,6W 0 VseS,Vre R, VjeN. (13)

The planning tail assignment problem is described by constraints (2)-(4) and (10). Similarly the recov-
ery tail assignment problem is described by constraints (5)-(7) and (11)-(12) for each scenario s. The
constraints (8)-(9) are used to track the deviation between the planning and recovery tail assignment
problem variables.

The objective function (1) minimises the cost of the planning tail assignment and the expected cost
of the recovery solutions from all scenarios, weighted by w?®, with a penalty for each flight change, g°.
Flight coverage in the planning model is enforced through constraints (2) and in the recovery model
through constraints (5) with an additional variable, 2, to allow for flight cancellations. The restriction
on the number of available aircraft is described in constraints (3) and (6) for the planning and recovery
scenarios. Also, constraints (4) and (7) ensure the required number of aircraft are positioned at each
airport at the end of the day to begin the next days flying in the planing and recovery scenarios. The set
of constraints (8) are the non-anticipativity constraints ensuring that each aircraft r is assigned to the
same flights in both the planning and recovery stages up to the first disrupted flight for each scenario s.
Since all scenarios are known ahead of time we require these constraints to reflect decisions that would

be made by the airline operations control centre in the event of a disruption. After, and including, the
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first disrupted flight the constraints (9) are used to count any deviation in the flight strings assigned to
each aircraft for planning and recovery variables in absolute terms. In the objective function we have
only included the variable e;; , which represents whether flight j is added to the recovered flight route of
aircraft r. Since the RRTAP is a minimisation problem, the optimal solution requires ej;" and ejfr_ to be
tightly constrained at the lower bound, which is defined by constraints (9) or (13). Now the lower bound
of (13) is dominated by (9) when the left hand side is greater than zero, which is at most 1. Therefore,

the values of e;j and €}, will be at most 1 in the optimal solution of the RRTAP.

3 Solution Methodology

The RRTAP is a large scale optimisation problem that solves the planning and recovery tail assignment
problems simultaneously. The resulting naive formulation of the RRTAP is a very large and intractable
problem, requiring decomposition and enhancement techniques to improve the solution runtime. A key
feature of our solution methodology is to integrate the techniques of Benders decomposition and column
generation, shown to be very effective in solving integrated airline planning problems [11,22,24].

Since the RRTAP is similar in structure to a stochastic program, when decomposed by Benders
decomposition, each of the recovery scenarios form scenario subproblems. This technique moves the
difficult constraints, equations (8)-(9), to the subproblem, and by fixing the planning variables from the
master problem, the individual recovery problems are solved more efficiently.

The planning master problem can take any form since the only connection between it and the sub-
problems is the assignment of flights to aircraft, which is the main objective of the tail assignment
problem. This is also true for the recovery subproblems, where a variety of simple or complicated recov-
ery policies can be used. By having the recovery problem separated out into the Benders subproblems it
is even possible to use heuristic recovery techniques in an attempt to improve the runtime of the RRTAP.

In the implementation of Benders decomposition, further techniques can be used to accelerate the
convergence of this method. Such techniques include the Magnanti-Wong method [21], the independent
Magnanti-Wong method [23] and local branching [25]; here we use the Magnanti-Wong method [21]. To
attain an integral solution we require the use of branch-and-price and in our implementation we have
contributed new, and modified existing, branching rules for use with the tail assignment problem. By
identifying specific structures in our problem, we are able to exploit this through branching rules to
enhance the branch-and-price process.

In the next sections we will describe how we applied the techniques of Benders decomposition and

column generation to the RRTAP and the enhancement techniques used.
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3.1 Benders Decomposition

The decomposition for this problem is clear given the distinct separation of variables, y;", 27, e;:' and

€}, » between each of the recovery scenarios, s € S. The primal Benders subproblems (PBSP-s) created
for each scenario s include these variables and the constraints (5)-(9). Only of the planning variables,
Yp,Vr € R,Vp € P" and the constraints (2)-(4) are included in the Benders decomposition master
problem (BMP). At each iteration of the Benders decomposition algorithm a Benders cut will be found
from the optimal dual solutions for every scenario s and introduced to the BMP. The feasibility Benders
cuts ensure that PBSP-s is feasible for the solution of the optimal planning variables, and the optimality
cuts provide a lower bound for the objective function of PBSP-s in the BMP. Each subproblem, PBSP-

s, finds an optimal recovery strategy for a given set of optimal planning variables ¥ and a particular

disruption scenario s. The primal Benders decomposition subproblem for scenario s is described by:

@) =min SST aryrY dizE Y Y e (14)

reR pePs" JEN reRjeEN
st Y > alyy =1 VjeN, (15)
rER pEPsT
>y <1 VreR, (16)
pePST
SN oy =M, WheB, (17)
(PBSP-s) r€ERpEP"
Do @ = Y aul, VreRYVjeNT (18)
pePer pEPT
al Yt + et — e = ajplh  Vr € R,Vj € No~post (19)
jpYp jr = Gr irYp vJ ’
pEPsT pePT
ys >0 VreRNVpe P, (20)
2 >0 VYjeN, (21)
e >0e, >0 VreRVjeN. (22)

The optimal solution for BMP is given by the set of variables ¥, which are fixed and passed to
PBSP-s for each scenario s. To ensure that PBSP-s is always feasible, an initial set of strings, p’ € P*",
are generated by replicating the routes from the optimal master problem variables, y, for all flights
J contained in N*7P"¢ a;pyy, = aj,y, ,Vj € NP Vr € R, Vp' € PT". This satisfies the cover
constraints (15) since we are able to set zi =1,Vj € N#7Post and the non-anticipativity constraints
(18). We define the dual variables as 8° = {8j|Vj € N}, v° = {7*"|Vr € R}, A° = {A\}|Vb € B}, and
0% = {6"|Vr € R,Vj € N} for the constraints (15), (16), (17), and (18)-(19) respectively. For each
scenario s, after solving PBSP-s the Benders cuts are generated from the dual solutions of (15)-(19).

The resulting Benders optimality cut generated from a single iteration of the Benders decomposition



3 SOLUTION METHODOLOGY 12

algorithm is defined as,

P DB AT I NM Y DD 6 ag, (23)

JEN reR beB reERjEN peP"™

For a fixed ¥, the right hand side of the Benders optimality cut, equation (23), is the objective function
value for the dual of PBSP-s. The dual solutions of (15)-(19) express an extreme point of the dual
problem of PBSP-s. The initial columns generated for each subproblem ensure that PBSP-s is always
feasible and hence only optimality cuts, of the form given by equation (23), are required to be added to
the BMP.

To apply the Benders cuts from the PBSP-s to the BMP an additional decision variable ¢® must be
added to the master problem objective function. The value of ¢® in the solution of the BMP provides
the current lower bound of the objective function for the PBSP-s in the master problem, constrained
through the added cuts. In the solution process of the Benders decomposition scheme we introduce a
new set Q° which is the set of all Benders cuts w for an individual scenario s. Each Benders cut w is
defined by the dual variables 8%, v“% A“® and 6“® from the PBSP-s for disruption scenario s. The

Benders decomposition master problem (BMP) is described as follows,

® = min Z Z cpYp + Zwsgas, (24)

reR peP" sesS
s.t. Z Z ajpy, =1 Vj €N, (25)
rER peP"

Y yp<1 VreR, (26)

pePpr
(BMP) S>> owyp =M, Vbe B, (27)

reRpePT
2D IDID BT ED DD DR Br
rE€R jEN peP" JEN re€R beB

Vs € S,Vw € QF, (28)
Y, € 7T VYreR,Npeg P, (29)
' >0 VseS. (30)

The Benders decomposition solution process is performed by solving BMP and then with the optimal
planning solution, y, checking PBSP-s for each scenario s for any improvement cuts. There is a trade-off
in the computational performance and the optimality gap of the solution. The lower bound of PBSP-s
for each scenario s is provided by the value of ¢° in the solution to BMP and the upper bound is the
objective function value of PBSP-s for a given ¥, u®(¥), at each iteration. Our chosen criteria for adding
additional cuts is the gap between the upper and lower bounds, p(¥) and ¢® respectively, of the Ben-
ders decomposition problem relative to the Benders master problem objective value, ®. This optimal

subproblem criteria is similar to the condition proposed in Papadakos [24] as the stopping criteria. For
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each iteration of the Benders decomposition a cut will be added if the following condition is violated,

S(S) _  AS
MO8 o vses, (31)
)
where ¢ is the tolerance that we have used in our model, set at ¢ = 107*. The Benders master problem
is solved when no improvement can be made with further cuts from the subproblems; this is equivalent

to condition (31) being satisfied for all s € S.

3.1.1 The Magnanti-Wong Method

At each iteration in the solution process the generated cuts provide an incremental improvement to the
master problem. The efficiency of the solution process is dependent on the quality of the cuts that are
added from the subproblems. In the PBSP-s it is common for a degenerate primal solution to be found
which indicates that multiple optimal dual solutions exist. In this situation, the cut that will produce the
best improvement in the BMP can be found using the Magnanti-Wong method [21]. The objective of this
method is to find a cut that dominates all other possible cuts in the current iteration of the subproblem;
we call such a cut Pareto optimal. Given two optimal dual solutions (3%,v5, A%, 07) # (85,5, A5,685),
the cut generated from solution 1 dominates solution 2 if and only if

SUBLAD AW HI MM+ YD s,
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(32)

for all y = {y;m € R,p € P"} with a strict inequality for at least one point. To find the Pareto
optimal cut the Magnanti-Wong method introduces an auxiliary optimisation problem to find the cut
which is closest to a chosen core point, y°. The core point is a point that is chosen to be within the
relative interior of the LP relaxation of (25) - (30), y° € ri(y®?); the method by which this point is
obtained is explained later in this section. Since the core point is selected to be within ri(y?), by
satisfying condition (32) for y = y? ensures that the condition is satisfied for all y. We define the dual
Magnanti-Wong auxiliary problem (DMWAP-s) for scenario s as,

max > B+ Y ATHEI NMy+ YYD aragl (33)
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(B%,7%,A%,6°%) € A%, (35)

where A® is the dual solution feasibility space from the PBSP-s and its objective function value is given
by 1°(¥)-

The dual Magnanti-Wong auxiliary optimisation problem, DMWAP-s, is identical to the dual problem
of PBSP-s with the addition of constraint (34) and a change in the objective function. The primal form
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of DMWAP-s, which we will refer to as PMWAP-s, can be derived from the PBSP-s by (i) including a
primal variable corresponding to the additional dual constraint (34); and (ii) setting the right hand side
of the comparison constraints (18)-(19) to the value of the core point y°. As such, the implementation
of the PMWAP-s does not require much more additional development and the computational time is
comparable to the PBSP-s. In our Benders decomposition algorithm we solve the PMWAP-s to find the
Pareto optimal cuts.

To implement the Magnanti-Wong method it is a requirement to find a representative core point
within the relative interior of the LP relaxation of the BMP. In the case of a degenerate PBSP-s, the
DMWAP-s, or the primal form (PMWAP-s), is guaranteed to find the dual solution that is Pareto
optimal for the chosen core point as defined by the dominance condition (32). Given that the Benders
master problem is solved using column generation, the set of all variables has not been completely
enumerated, hence the LP relative interior is not fully known. This makes the task of finding a core
point within the relative interior difficult, and consequently the core point selection can only be made
LP)

as an approximation without the guarantee that y° € ri(yXf). Mercier et al. [22] state that using a

core point y¥ ¢ 7i(yr") does not preclude PMWAP-s from finding a valid Benders cut. However, the
further that y° is from ri(y“?) the weaker the Benders cuts that are generated by this method. An
important consideration for the Magnanti-Wong method is whether the chosen core point y is closer
to the relative interior 7i(y~") than the solution to BMP, §. The solution to PMWAP-s will always
generate a Benders cut closest to the chosen core point y°, which will satisfy the dominance condition
(32). If the core point is further from the relative interior than the current solution to BMP, then the
Benders cut generated by the solution to PMWAP-s can be further from ri(y’?) than the cut generated
from PBSP-s. This demonstrates the importance of finding a good representative core point to ensure
that the Magnanti-Wong method finds a Benders cut to improve the BMP solution.

Papadakos [23] has developed enhancements to the Magnanti-Wong method, which we will discuss
in Section 3.3, along with different schemes used to find an appropriate core point. One such scheme
for a binary problem is to set the core point to y° = 1 or y° = 0, which is employed by Mercier
et al. [22]. However, this particular scheme is not useful for our problem given the complexity of the
comparison constraints (18)-(19) and generally causes the PMWAP-s to be infeasible. Another scheme,
presented by Papadakos [23], is to set the core point to the initial solution of the BMP, y° — ¥, then
after each iteration i of the master problem update the core point by y° — %yo + %yi. The benefit
of this particular scheme is that at each iteration i of the Benders decomposition algorithm the core
LP)

point is moving closer towards the ri(y*~*). So even if the initial core point is not within the relative

interior, y° ¢ ri(y"?), it is possible to incrementally improve the potential strength of the Benders cuts
with more iterations of the Benders decomposition algorithm. Through experimental experience this
latter scheme from [23] has been shown to be useful in our problem to find a representative core point.

We demonstrate in Section 4.3 that the Magnanti-Wong method greatly improves the efficiency of the
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Benders decomposition solution process.

3.2 Column Generation

Given the exponentially large number of variables in the Benders master (BMP) and subproblems (PBSP-
s), both are solved using column generation. Each of these problems share a similar structure and the
column generation subproblems are solved using the same algorithm, so for conciseness we will only
describe in detail the implementation of column generation for the PBSP-s.

The PBSP-s is formulated as a LP and can be efficiently solved using column generation. Each
iteration of the column generation method improves the master problem by introducing negative reduced
cost columns. These columns are generated from the subproblem using the current LP dual solutions
of the PBSP-s. In Section 3.1 we defined the dual variables for each scenario subproblem, s, as 3° =
{BiIVj € N}, v° = {y*"|Vr € R}, A* = {\}|Vb € B}, and 6° = {6;"|Vr € R,Vj € N} for the constraints
(15), (16), (17), and (18)-(19) respectively.

The column generation subproblem for the PBSP-s is formulated as a network flow problem for each
aircraft r. The connection network used to solve the column generation subproblem for the PBSP-s is
defined by a set of nodes and a set of arcs. As stated in Section 2, the nodes for the planning connection
network are defined by the flights in the schedule. Since the technique of flight copies is used to implement
delays in the recovery subproblem, each flight within the schedule must be duplicated once for each copy.
The set of copies v for flight j is given by U;. There are different sets of copies for each partition of
the flight schedule, as such Vj € N°77" U; = {0} indicating the set of copies only contains the copy
representing the original schedule departure. Also, for all flights j € N57P°5' U, contains v = 0 and at
least one other copy representing some delay on flight j. So, we define the set N* = {j,|j € N,v € U;}
as all nodes that define the connection network for the PBSP-s. The rules presented in Section 2 that
describe a feasible connection are used to define the set of connections for the PBSP-s contained in
C* = {(iu, jo)|iu, jo € N°}. We define the variables x7", that equal 1 if connection (i, j,) is used
in a string generated for aircraft r in scenario s, 0 otherwise. The cost of using connection (4, j,) for
aircraft r in scenario s is defined by ¢;7; . Finally, b, € B represents the overnight base where aircraft r

is located at the start of the day. The shortest path problem to generate negative reduced cost columns
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for the PBSP-s is defined as,

G =min Y el - > > (B G, > D Nl - (36)
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The problem described by (36)-(41) is a network flow problem with one source and multiple sink
nodes. Constraints (37) describe the flow balance and constraints (38) ensure that each node in the
network is visited at most once. As a variation on the classic network flow problem, the use of multiple
flight copies requires that only one copy per flight is included in the shortest path, achieved through
the coverage constraints, equations (38). Given that (36)-(41) is formulated as a network flow problem,
there are a number of classical algorithms available to efficiently solve this problem.

Since the network we are using for the shortest path problem is a directed acyclic graph it is possible
to construct a topological ordering of the nodes. A topological order is defined as a list where node 1 is
ordered before node j if 3(i,j) € C [3]. Since the connection network forms a directed acyclic graph, a
simple pulling algorithm, that “pulls” the shortest path distance from earlier processed nodes, can be
used to efficiently solve the shortest path problem described by (36)-(41). An example of such a pulling
algorithm, which we have implemented for this problem, is described in Ahuja et al. [3].

There is little difference in the column generation subproblem for the BMP and the PBSP-s, since
both are formulated as network flow problems. The column generation subproblem of the BMP is
formulated with the constraints (37)-(41), however a different connection network is required. Since the
BMP solves the planning tail assignment problem, there is no possibility to delay flights. As such, for all
flights j € N, we define U; = {0}, containing only the copy representing the original scheduled departure
time. So, using this flight copy definition the connection network can be constructed in the same manner
presented above for the PBSP-s. Another difference between the column generation subproblems of the
BMP and the PBSP-s is the form of the objective function. For the BMP we define the optimal dual
solutions as u = {u;|Vj € N}, v = {v"|Vr € R}, w = {w|Vb € B}, and p = {p*“|Vs € S,Vw € Q°}

for the constraints (25)-(28) respectively. As a result the objective function for the column generation
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subproblem of the BMP is given by,
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(42)
Because of the similarities between the column generation subproblems of the BMP and PBSP-s, the
same shortest path algorithm can be implemented. Since the structure of the BMP is modified after each
iteration through the addition of Benders cuts, the objective function (42) must be updated with the
additional dual variables. The addition of Benders cuts only affects connection costs while maintaining
the network structure.

The efficiency of the column generation process depends on the initial solution provided to the
LP relaxation of the restricted master problem. For the first iteration of the BMP a set of initial
columns is manufactured by allowing the number of aircraft to equal the number of flights, with each
aircraft performing only one flight to satisfy the flight cover constraints (25). For the aircraft assignment
constraints (26) and the end of day constraints (27) only the first n variables are included, where n = |R].
To satisfy all of the constraints in the BMP we must introduce the concept of ferry flights, which is the
repositioning of aircraft by flying without passengers. Constraints (27) are satisfied by using these ferry
flights, and any columns that contain these flights are given an artificially high cost to ensure that they
do not appear in the final solution. For each subsequent iteration of the BMP, the column generation
master problem is initialised with the solution found in the previous iteration. The initialisation of the
PBSP-s is simpler since the initial recovery variables can be based off the optimal planning variables
from the BMP for the current iteration. The methods for generating the initial variables for the PBSP-s
is explained in Section 3.1.

It is a well known aspect of column generation that symmetry between the variables within the
master problem affects the computational performance of the algorithm. This occurs in our model since
we identify each aircraft individually, however they are mathematically identical. To reduce the effects
of this symmetry we assign one aircraft to each flight that has no preceding connecting flight; thus the
only connection arc to that flight is from a source node. The number of flights with the only preceding
connection from a source node for each overnight airport is provided by the constant M. This constant
is used in constraint (27) to ensure that the required number of aircraft overnight at each end-of-day
location b. Difficulties arise when the number of aircraft starting at base b is greater than M, allowing
some symmetry to still exist. We address this problem by adding a branching rule to exclude aircraft

from using particular starting flights. The specifics of this branching rule will be detailed in Section 3.4.

3.3 The two-phase algorithm

Given the size of the Benders master problem, it is computationally difficult to solve to integral

optimality for every iteration. To overcome this complication we have implemented a two-phase algo-
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Algorithm 1 The two-phase algorithm

PHASE 1
Relax the integrality requirements for the BMP and PBSP-s Vs € S.
Set ¢® < 0,Vs € S.
repeat
Solve the BMP using column generation, (24)-(30).
for all scenarios s € S do
Solve the PBSP-s using column generation, (14)-(22).
if condition (31) is not satisfied then
if solution to PBSP-s is degenerate then
Use the Magnanti-Wong method to find the Pareto optimal Benders cut.
end if
Add cut to the BMP, of type (23).
end if
end for
until condition (31) is satisfied, Vs € S.
PHASE 2
Re-introduce the integrality requirements for the BMP.
Retain all cuts that have been added in PHASE 1.
repeat
Solve the BMP using column generation, (24)-(30).
for all scenarios s € S do
Solve the PBSP-s using column generation, (14)-(22).
if condition (31) is not satisfied then
if solution to PBSP-s is degenerate then
Use the Magnanti-Wong method to find the Pareto optimal Benders cut.
end if
Add cut to the BMP, of type (23).
end if
end for

until condition (31) is satisfied, Vs € S.
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rithm which is based off the three-phase algorithm developed to solve the integrated crew scheduling and
aircraft routing problem with Benders decomposition [11,22,24]. The two-phase algorithm is a heuristic
that initially solves the linear relaxation of the RRTAP, and re-introduces the integrality requirements to
the BMP after the first phase is completed, as described in Algorithm 1. In Cordeau et. al. [11], Mercier
et. al. [22] and Papadakos [24] the third phase is used to check the feasibility of adding integrality to the
Benders subproblem after solving the integral Benders master problem. This is not necessary for our
model since for all scenarios s, the PBSP-s is always feasible for any solution to the master problem, as
explained in Section 3.1. Thus, it is only necessary to implement the two-phase algorithm for our model.

To demonstrate the benefit of the RRTAP we take the integral BMP solution and evaluate the
recovery costs by solving the PBSP-s, Vs € S, to integrality. Given the structure of the two-phase
algorithm it is possible to evaluate the solution at the completion of both phases. Using the solution
to the BMP at the completion of Phase 1 can provide a good upper bound for the problem. To find
this upper bound, the BMP is solved once to integrality using all the cuts added to the BMP by the
completion of Phase 1. This provides a planning solution to evaluate by solving for all scenarios using the
PBSP-s. For all scenarios s, the PBSP-s is then solved to integrality to find the current best recovery
solution to the RRTAP. The cuts which are added in Phase 2 tighten this upper bound, however in
Section 4 we demonstrate the Phase 1 bound is very close to the optimal solution.

It is not necessary to include the Magnanti-Wong method [21] in Algorithm 1, however we have
found great computational benefit from its use each time the PBSP-s is solved as demonstrated in
Section 4.3. Another possible technique to improve the computational performance of the Benders
decomposition algorithm is to implement the independent Magnanti-Wong method [23], which is solved to
find cuts independent of the subproblem solution. In Papadakos [23], the benefit of using the independent
Magnanti-Wong method is to generate initial cuts that provide a good lower bound from the master
problem without having to solve the Benders subproblems. Since our problem requires a large number
of cuts to find the optimal solution, the addition of one initial cut does not create a significant enough
improvement in the BMP. As a result we have chosen not to include the independent Magnanti-Wong

method [23] and only implement the original Magnanti-Wong method [21].

3.4 Branching Rules

Three different branching rules have been implemented for this problem, two are designed to eliminate
the fractional solutions from the optimal LP relaxation and a third is to break symmetry in the BMP. The
former of these rules is based on Ryan/Foster branching [29] since this technique handles the 0-1 binary
variables in a more meaningful manner than variable branching. The first branching rule implemented
for this problem is similar to the branching performed in Barnhart et al. [4], branching on the most
fractional pair of flights forming a feasible connection. Given a set of fractional variables, we search

over all variables to find the most fractional flight connection and identify a flight pair to branch on,
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Algorithm 2 Aircraft/Arc branching
Let ¢ be the position indicator for the current flight.

Given a pair of flight strings p; and py for aircraft r*,
set ¢ to the position of the first flight in both strings, ¢ < 0,
set the divergence point d to the starting position, d < 0, this assumes that the two strings only share
the source node.
Initialise arc; and arcy as empty flight strings.
while 7 < length of p; and 7 < length of p; do
if flight at position 4 in string p; #* flight at position ¢ in string ps then
Set the divergence point d < 1.
Exit loop.
end if
Increment ¢ by 1.
end while
for all flights from position d to the length of p; do
append flight to arc;.
end for
for all flights from position d to the length of py do
append flight to arcs.
end for
On the left branch, exclude all connections in arc; for aircraft r*,

on the right branch, exclude all connections in arcs for aircraft r*.

(i*,7%). The left branch forces the flight connection to be used, (i*,5*) € p if i or j are contained in p,
and right branch requires the connection is not used, (i*,j*) ¢ p, for all aircraft. However on the right
branch it is not a requirement that the two flights do not exist on the same string for that aircraft, so
(t*,k) € p,k € Niegs and (1,7*) € p,l € Niegs where k # j* and | # i* is permissible. This method of
branching is called branching on follow-on’s.

The second of the branching rules, which we define as aircraft/arc branching, excludes strings of
flights being allocated to a particular aircraft. This method of branching has been developed from the
rule presented in Barnhart et al. [5] for multi-commodity flow problems. In their problem the commodity
to branch on was determined by the largest amount of flow; in our case each of our commodities have
the same amount of flow, hence the method requires a variation. We search over all fractional variables
to find the two most fractional for each aircraft. Comparing the sum of the fractional values from the
pair of variables for each aircraft, the largest sum indicates the aircraft, »*, and the fractional variables

to branch on. Each variable in the pair represents a string of flights with some of the flights are common
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between the two strings. There is at least one common node between the strings since there is only one
origin for each aircraft, hence the source node is always common. By ordering the flights in both strings
by their position, the divergence point is identified as the earliest position that contains a different flight
between the two strings. Two new strings of flights are identified from the divergence point to the sink
node and arc; and arcy are defined to contain the connections between these flights in these two strings
respectively. The branching is performed by excluding aircraft r* from using the connections contained
in arc; on the left branch, and arcs on the right branch. A detailed description on identifying arc; and
arcs to branch on is presented in Algorithm 2.

With the two branching rules implemented there must be a priority assigned to each specifying when
they should be used. In our model we assign a higher priority to the follow-on branching than the
aircraft/arc branching. We assign the priorities in this way since the follow-on branching takes a more
global view of the problem, branching on pairs of flights for all aircraft. At the point that no valid
follow-on branching exists, then we exclude strings of flights from use by each aircraft.

As mentioned in Section 3.2 we have implemented a third branching rule to help eliminate the
symmetry in the master problem. This branching rule searches all of the fractional variables looking
at the starting flights to identify a particular flight which is used by two different aircraft. We define
VI ={veV[r" =r,s" = j} where V is the set of all fractional variables and 7* and s" are the aircraft
and starting flight for variable v respectively. The fractionality of a particular aircraft pair and starting
flight is calculated by f;'"™ = Zvevﬁ v, if V;* # 0. We branch on the tuple (r1, 72, j) with the largest
f;”z, excluding r; from starting with flight j on the left branch and excluding ro from starting with
flight j on the right branch. This branching rule is assigned the highest priority forcing the earliest

branches to break the symmetry of the master problem.

4 Computational Experiments

To test the effectiveness of using the recoverable robustness technique we compare the difference in cost
for a simulated recovery scenario between our solution and a representative proxy robust algorithm.
We develop a proxy robust algorithm using the connection cost of Gronkvist [15] in defining the cost
of a flight string c;. The new proxy robust model consists of the objective function Yoreh ZpE P CpYp
and the constraints (2)-(4) and (10) is solved to find an optimal tail assignment. Since the aircraft
routing and, by extension, the tail assignment problem is a feasibility problem, the selection of a cost
function is used only as a proxy to favour specific connection lengths and improve robustness. The
solutions found using the Gronkvist connection cost function and the RRTAP are just two of a large
number of feasible solutions to the tail assignment problem. As such, there are potentially many other

feasible solutions that have better and worse recoverability than the two compared here. Therefore, the

Gronkvist connection cost function is selected only as an example of proxy robust approaches and to
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demonstrate the improvements in recoverability that can be achieved with the RRTAP.

The connection cost function presented in the PhD thesis of Gronkvist [15] attempts to improve
the robustness of tail assignments by assigning costs to flight connections based on their length. We
illustrate the connection cost function implemented for our representative proxy robust model and in
the first stage of our recoverable robust model in Figure 1. The motivation for this form of connection
cost function is related to the potential of propagated delay and recovery possibilities. Gronkvist argues
that very short connections, ¢, < t < tgiqrt, while ideal in regards to aircraft utilisation, are more
prone to propagating delay, and suggests that a compromise ideal connection length of ¢ = 120. The
medium length connections, tjower < t < typper, are penalised heavily since they do not provide high
enough utilisation and are too short to service extra flights in a recovery situation. The long connections,
t > tend, are also favoured since in a recovery situation the aircraft can be used to service additional
flights within the connection time.

We evaluate the effectiveness of the Gronkvist connection cost function by individually optimising
the recovery decisions using the PBSP-s for each disruption scenario s. The resulting cost indicates
the recovery performance of the Gronkvist planning solution. We expect the results to already be very
good, given the intelligent choice of objective function and exact optimisation of recovery through our
model. Indeed, such an exact quantification of the performance of the Gronkvist solution by explicitly
determining the optimal recovery strategies and evaluating the recovery costs, has to our knowledge not
been carried out. It is against this representative proxy robust model that we review the performance of
the RRTAP. We compare the weighted recovery costs and the constituent costs of swaps, cancellations
and delay minutes in our experiments.

We mention in Section 3 that it is possible to use any formulation for the planning tail assignment

problem. The Groénkvist solution used in our experiments is a proxy robust model based on a connection
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Figure 1: Connection cost function presented in Gronkvist [15]. Time parameters (minutes): tpin =
40, tstart = 120, tiower = 180, tupper = 300,teng = 360. Cost Parameters ($): cgrare = 500, Ciower =
100, Cupper = 5000.
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cost function. Without much further work the RRTAP could be reformulated to use any proxy robust
planning model in the BMP and improve the recoverability of that model through intelligent allocation
of flights to aircraft. For example, the RRTAP provides great flexibility i) in the models used for the
planning and recovery problems, and ii) the data and flight networks used in the solution.

A major benefit to the RRTAP is that the weighted recovery cost of the final solution will be no
worse than that of the solution to the model used in the BMP. So there is always potential benefit in
applying the recoverable robustness technique to any model.

We implemented this model in C++ and called SCIP 2.0.1 [1] to solve the integer program using
CPLEX 12.2 as the linear programming solver.

4.1 Description of scenarios and model parameters

The test data for this model consists of 53 flights with 341 feasible connections in a domestic network
operating with 3 major airports, serviced by 10 aircraft. Two different types of disruption scenarios have
been implemented, which are airport closures and aircraft grounding, resulting in 102 scenarios. The

specifics of the disruption scenarios are presented in Table 2.

Start Weight
Type Affected Duration Scenarios
Time Ws
Airport Closure One scenario for 6am 180min 0.07% 0-2
each major airport 300min 0.03% 3-5

12pm | 180min 1.4% 6-8
300min 0.6% 9-11

Aircraft Grounding | One scenario for 6am 60min 3.5% 12-21
each aircraft 120min 0.7% 22-31
240min 0.14% 32-41

Aircraft Grounding | One scenario for 12pm | 60min 3.5% 42-51
each aircraft 120min 0.7% 52-61
240min 0.14% 62-71

Aircraft Grounding | One scenario for 5pm 60min 3.5% 72-81
each aircraft 120min 0.7% 82-91
240min 0.14% 92-101

Table 2: Disruption scenarios used.

We estimate the relative probability of each of the above scenarios occurring in a single day and
encode these probabilities as the weights, w®, in equations (1) and (24). There are a number of different
disruptions that could affect the operations of an airline, and within our model we only include a subset
of them. Given that each of these scenarios are not mutually exclusive, the sum of the probabilities

assigned to each scenario do not equate to 1. To determine the probability of an airport closure we
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assume that this schedule is a summer schedule, so it is more likely for an afternoon closure to occur
than a morning closure. In the summer there is very little chance of fog, which is the main contributor
to morning airport closures. Also, in summer, severe storms characterised by high winds and regular
lightning strikes generally occur in the afternoon. We estimate that in a season a single airport may
experience an afternoon closure approximately 3-4 times, so we assign a daily probability of 2% for a
closure of any length. Similarly, we expect that there is little chance of a morning closure during the
summer season so we assign a probability of 0.1% for a closure of any length. Further, we have estimated
that in the case of an airport closure there is a 70% chance that it will last for 180min, and a 30% chance
that it will last for 300min. For example we estimate that an afternoon airport closure for 300min will
occur with a probability of 2% x 30% = 0.6%.

An aircraft grounding could be attributed to a number of different factors, which include technical
issues, delays in the cleaning of an aircraft or baggage loading/unloading issues. The scenarios represent
the situation when an aircraft is not ready for a scheduled departure. Using data for US airlines published
by the Bureau of Transportation Statistics [27], in August 2011 approximately 18% of all flights were
delayed, and out of all flight delays approximately 26% were caused by factors in the airlines control,
so 18% x 26% = 4.68% of all flights were delayed due to airline factors. We assume that an aircraft
grounding causes flight delays due to airline factors, so for a single aircraft grounded for 60, 120 and
240min we assign the probabilities of 3.5%, 0.7% and 0.14% respectively. Now, 3.5% + 0.7% + 0.14%
= 4.34%, which is less than 4.68%, the percentage of all flight delayed due to airline factors, and this
difference occurs since we are approximating the rate of delay.

To determine the lowest cost recovery solution we have assigned costs for each minute delayed and
for flight cancellations. As mentioned in Section 2, we aim to use actual costs in evaluating our model.
It is very difficult to determine the actual costs for both delays and flight cancellations since there is an
unknown component of lost revenues. The delay costs are set at $100 AUD per minute for a full aircraft,
a figure based on the EUROCONTROL report by Cook et al. [10] which estimates the cost of delays at
€74 per minute. The cancellation cost per passenger for all flights in the network is estimated using an
average ticket price of $350 multiplied by a lost revenue parameter or ‘loss rate’. The loss rate would be
an airline specific value indicating the expected amount of passenger recapture after a cancellation. A
loss rate less than 1 indicates that a percentage of passengers are recaptured by rebooking themselves on
another provided flight, whereas a value greater than 1 represents the loss of all passengers and possible
future bookings with the airline. The inclusion of a loss rate is an attempt to capture the direct and
indirect costs, such as lost revenues and loss of goodwill respectively, associated with the cancellation
of a flight. Since the loss rate is very difficult to estimate we have presented our results using a set of
values ranging from 0.01 to 3 (0.01, 0.125, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0) to provide a broad test of
our model. Both the average ticket price and loss rate could be flight specific and the implementation

of this is trivial.
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In determining the cost of flight delays and cancellations we assume that the aircraft are at 75%
capacity. Since the aircraft is not booked to capacity we have developed a simple method for calculating
the cost of cancellations for each individual flight. We assume that one third of the passengers on the
cancelled flight will be rebooked to the next available flight with the same O-D pair at a cost of 25% of
$100 AUD per minute to the next departure. This cost of rebooking passengers onto the next flight is
simply the cost of the delay experienced in waiting for the next departure. The rest of the passengers
on the cancelled flight do not get rebooked and as a result the revenue is lost. The revenue that is lost
from the cancelled flight is calculated from this proportion of passengers. Since the passengers are not
accommodated on the next available flight, there is the option of rebooking themselves with this airline
or another. This rebooking process is captured in the lost revenue parameter, the ‘loss rate’. Also, the
delay cost per flight given in the EUROCONTROL report [10] is based on a full aircraft and given that
we are assuming a 75% capacity, the delay cost of an aircraft per minute in our model is $75.

As mentioned in Section 2 we handle the flight delays by including a set of flight copies in the recovery
network. For our experiments we have used a maximum allowable delay of 180min, with flight copies
for every 30min. Given that the delay increment is 30min, we will be over estimating the delay costs,
since many shorter feasible connections exist in the delay window for each flight. Greater granularity is
possible by decreasing the delay copy increment, however this degrades the computational performance

with the addition of more flight copy arcs to the connection network.

4.2 Comparison of recoverable robust solutions and Gronkvist solution

The RRTAP attempts to find a planned solution that requires minimal changes in recovery from disrup-
tions. To represent the difficulty faced by operations controllers to reroute aircraft we use a swap penalty
parameter g°. This penalty parameter can be likened to a cap on the number of allowable changes during
a disruption, however a cap is more restrictive than a penalty. In our model, low swap penalties result
in more changes made in the recovered solution, which provides a lower recovery cost. We have found
that the lower recovery cost occurs because greater flexibility is allowed in the model, so it is possible to
reroute more aircraft to avoid costly delays and cancellations. As a review of the different trade-offs and
outcomes we present our results with swap penalties in the range 10 < ¢g* < 10000 (10, 500, 1000, 2500,
5000, 10000). A swap penalty of 10 illustrates the case where there is virtually no penalty for swaps. It
is also trivial to implement this parameter with different values for each flight or aircraft in the model.

We are using the Gronkvist connection cost function in the BMP of the recoverable robust model.
With this we investigate whether our algorithm can provide superior recovered solutions when compared
to the proxy robust model. The relative performance between the two robust tail assignment models is

evaluated using the weighted sum of the recovery costs over all scenarios. This is defined as

WeightedCost = Z w® Z Z &Gy + Z djzi + Z Z g€ o (43)
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Penalty
500 1000 2500 5000 10000
0.01 (-1.32,-0.19) (-1.8,-1.8) (-1,0.55) (-0.73,-0.73) (-0.71,0.67)
0.125 (-1.73,-1.5) (-1.46,-0.71) (-0.2,0.23) (-0.66,-0.51) (-0.62,-0.39)
0.25 (-1.27,-0.99)  (-14.83,-14.66) (-1.21,-7.65) (-1.73,-1.73) (-1.71,-1.71)
(

g 05 | (-L.08-9.97) (-14.54-14.4)  (-12.83-12.8) -1.37,-0.99) (-1.3,-0.5)
= (-0.96,-0.73)  (-12.83-12.79) (-13.26,-13.19) (-5.95-5.57) (-0.97,-0.93)
w0
S 15 | (-0.86-7.64) (-11.68-11.65) (-12.33-12.22) (-5.17,-0.67)  (-0.99,-0.37)
2 (-0.78,-0.47)  (-10.73,-10.73)  (-11.51,-11.45)  (-4.91,4.98)  (-1.16,-0.81)
2.5 | (-0.72,-0.64)  (-9.93,-9.93) (-10.8,-11.23) (-4.75,-4.7)  (-0.9,-0.38)
3 (-0.66,-0.39)  (-9.23,-9.18)  (-10.18,-10.18)  (-4.38,-4.44)  (-0.89,-0.89)

Table 3: Percentage difference between the Gronkvist solution (x) and the recoverable robust solution,
Phase 2 (y) and Phase 1 (2), ((y — z)/z (%), (z — 2)/x (%)). For conciseness the results for penalty 10
are omitted. Percentage difference greater than 5% is highlighted.

which is the second term in the objective function (1). We use equation (43) to calculate the weighted
simulated recovery cost using the solution from the proxy robust model and the solution at the completion
of Phase 1 and 2 of the two-phase algorithm, Algorithm 1. We compare the weighted recovery costs
calculated with different cancellation loss rates and penalty weights. For all parameter sets, the weighted
recovery cost of the recoverable robust solution at the completion of Phase 2 either equals or improves
upon the proxy robust solution which is demonstrated in Table 3.

Table 3 presents the percentage improvement in the weighted recovery costs at the completion of
Phase 1 and 2. The largest improvement in the weighted recovery costs achieved at the completion of
Phase 2 for a specific penalty weight occurs with g° = 1000 and a loss rate > 0.25, a 14.83% cost reduction
is achieved with a loss rate equal to 1. There is an apparent nonlinear relationship between recoverable
robustness improvement and penalty weight and the greatest improvement occurs with weights in the
range 1000 < ¢° < 5000. In that range and with a loss rate > 0.25 the RRTAP achieves an average
improvement over the proxy robust solution of 8.77%, with a minimum improvement of 1.21%. The
most important practical feature of the RRTAP is the ability to reduce the weighted recovery costs
when compared to the proxy robust model, and in general to any planning tail assignment model. Since
the tail assignment can be formulated as a feasibility problem, any improvement in the recoverability of
the planned solution is made at no extra cost.

There are many methods of weighting the length of connections to achieve a desired tail assignment
solution. The Gronkvist connection cost function is an example of this; it attempts to avoid propagat-
ing delays and create recovery opportunities. To demonstrate the relative performance of alternative
connection cost functions against the Gronkvist function, we have solved the tail assignment problem
using linear (t), quadratic (#2), square root (v/¢) and hyperbola (1/t) functions. The results in Table

4 present the number of test cases where the selected function dominates Gronkvist and the average
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relative difference in the weighted recovery cost. The set of test cases, 54 in total, contains all of the
experiments used to create Table 3 including the experiments with a penalty equal to 10. Each of the
functions presented in Table 4 construct a tail assignment with different characteristics, for example
the linear, quadratic and square root functions favour shorter connections compared to the hyperbola
function which favours long connections. While the results presented in Table 4 show that the linear and
square root functions dominate Gronkvist in most test cases, Gronkvist outperforms the quadratic and
hyperbola functions. Table 4 also shows that the range of mean relative differences is not particularly
large, even over this collection of disparate cost functions.

The RRTAP could be solved using any connection cost function as the master objective, and one
would be guaranteed to obtain a planned solution better than or equal to the solution obtained using
that particular proxy robust cost function. Because the Gronkvist function has appeared in the literature

to solve the tail assignment problem [15,16] we choose to solve RRTAP relative to this function.

Function Linear  Quadratic Sqrt Hyperbola
Number of Cases Dominating Gronkvist (/54) 38 15 47 15
Average Relative Difference -3.62% 0.62% -5.74% 0.62%

Table 4: Analysis of connection cost functions. The constructed tail assignment is evaluated against 54

test cases using different penalties and loss rates.

The results in Table 3 demonstrate that the RRTAP improves upon the weighted recovery costs of the
proxy robust solution in most cases. To illustrate the performance of the RRTAP solution when compared
to the proxy robust solution for each individual recovery scenario we have selected 4 representative cases;
i) Penalty = 500, Loss Rate = 0.5; ii) Penalty = 1000, Loss Rate = 1.5; iii) Penalty = 2500, Loss Rate
= 1; and iv) Penalty = 2500, Loss Rate = 2.5. Figure 2 presents the individual recovery costs in each
scenario for the proxy robust, Phase 1 and Phase 2 solutions. Comparing the results of the RRTAP and
the proxy robust solution we find much more improvement variability in the individual recovery costs
across the scenario set. The individual recovery costs for each scenario s are calculated by

IndividualCost(s) = Z Z Yy + Z djzj + Z Z g€, (44)

reRpePsT JEN reRjEN

which is presented for all cases in Figure 2. We have selected two types of scenarios for use in this model,
airport closure and aircraft grounding, as explained in Table 2. An airport closure has a much greater
impact on an airlines operations than an aircraft grounding since a large number of flights and aircraft
are potentially affected. In Table 5 we present the number of flights that are affected in the airport
closure scenarios. The flights are classified “affected” if they are scheduled to arrive at, or depart from,
the closed airport within the closure time. Comparing Table 5 with Figure 2 it is clear that the weighted
recovery cost is dependent on the number of affected flights. Since there is a much greater recovery cost

associated with an airport closure, compared to an aircraft grounding, we have separated out their costs
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in Figure 2. It is difficult to determine the affected flights for the aircraft grounding scenarios since this
is dependent on the planned routing which we are optimising.

While the RRTAP solution may perform better across the sum of the individual recovery costs than
the proxy robust model, there are a number of scenarios where it performs worse. The largest relative
improvements occur for the aircraft grounding scenarios. This demonstrates that for the larger disruption
scenarios, which involve more flights and aircraft, the planned routing does not have much impact on
the recovery costs. The results in Figure 2 show that the improvement in the sum of the recovery costs
is attributable to an improvement in the cost for a large proportion of the individual scenarios. This is
quite important since we are attempting to improve the recoverability of the tail assignment for a broad
range of disruptions, so if the improvements were restricted only to a few scenarios the efficacy of this

technique would be reduced.

Scenario o 1 2 3 4 5 6 7 8§ 9 10 11
Flights Affected | 2 8 8 16 5 10 8 13 4 5 1 1

Table 5: Number of flights affected in the airport closure scenarios. Scenarios 0-11.

The RRTAP is a robust model that is closely aligned with stochastic programming. Since we are
applying a weight to the recovery cost for each scenario, the objective of this model attempts to minimise
the weighted recovery cost for the given scenario set. There are other robust modelling formulations
that can be applied to the tail assignment problem, each with their own emphasis and advantages and
disadvantages. For example, one may wish to minimise the maximum recovery cost across the entire
scenario set. Such a model, which we will label the “pure robust” tail assignment problem (PRTAP),
can be easily formulated from the model described by (1)-(13) with a change in the objective function
and the addition of a set of constraints. To formulate the PRTAP we modify the objective function by
removing all variables relating to the recovery subproblems. To minimise the maximum recovery cost
we introduce the variable %% to the objective function, representing the upper bound on the recovery
costs from all scenarios. To enforce this upper bound we add a set of constraints that require u™** to

be greater than or equal to the recovery solution cost for all scenarios. We define the pure robust model

as,
min 37 32 G+ " )
reR pePT
(PRIAP) s.t. Constraints (2)-(13) (46)
ZEED DDA DN EEDIP IR 1)
ey ey jen reRjeN

The PRTAP decomposes between the planning and all recovery scenario variables and Benders decom-

position may be applied. This model is identical to the RRTAP, with the addition of the maximum
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Comparison in Recovery Costs for different penalties and loss rates
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Figure 3: Weighted and 90th percentile recovery costs - comparison between the RRTAP and a Pure

Robust formulation.

recovery cost variable, ™" to the objective function and the inclusion of additional constraints (47)
to enforce the maximum recovery cost across the complete scenario set.

Because of the differing objectives, the recoverable robust (RRTAP) and pure robust (PRTAP)
formulations should produce different results. Given these distinct objective functions, it is very difficult
to identify a metric that provides a fair comparison between the two models. Taking this into account,
both the weighted recovery costs, as calculated by equation (43), and the 90th percentile recovery cost
over all scenarios for the RRTAP and the PRTAP is presented in Figure 3. Across all parameter sets,
the difference in the maximum recovery costs between the two models is within the range of -3.73% to
6.05%, with an average of 1.04% indicating only a small improvement in the PRTAP over the RRTAP.
Since there is little variation in the maximum recovery costs, the 90th percentile has been selected for
Figure 3 to demonstrate any difference between the two models. The results show that the RRTAP
outperforms the PRTAP in terms of the weighted recovery costs for all selected cases, which is to be
expected since this value is a term in the objective function of the RRTAP. Also, in comparing these two
models by the 90th percentile, the PRTAP only improves upon the RRTAP in three of the selected cases
and only with a swap penalty of 10000. From these results it is clear that in a feedback robust model
using a full recovery problem, the minimisation of the weighted cost results in an acceptable reduction
in the magnitude of all recovery costs.

The runtimes for the PRTAP provide some interesting results when compared to the RRTAP. Our
experiments for the RRTAP were run to a maximum time of 3 hours to ensure that a solution could
be found in a reasonable time frame. We find that on average the PRTAP requires 4.01 times as long
as the RRTAP to find the optimal solution, with average runtimes of 7371.18 and 3093.93 seconds for
the PRTAP and RRTAP respectively. We provide a greater analysis of the runtime for the RRTAP in
Section 4.3.
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14 Runtime for different algorithm enhancements
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Figure 4: Runtime with the use of different algorithm enhancements. The dots represent the total

runtime.
4.3 Behaviour of solution runtimes

The RRTAP is a large scale model for which a number of enhancement techniques have been applied to
improve the solution runtime. In Section 3 we documented the techniques that have been implemented
to solve RRTAP. The key feature of the solution methodology is the use of Benders decomposition and
column generation, which are commonly used in solving large scale optimisation problems. To improve
the runtimes even further we introduced the Magnanti-Wong method [21], as illustrated in Section 3.1.1,
to generate Pareto optimal Benders cuts. We also implemented a number of branching rules described
in Section 3.4 for use in Phase 2 of the two-phase algorithm. In Figure 4 we present the runtimes
for the RRTAP using different algorithmic enhancements on the four cases selected for Figure 2. The
different results presented in Figure 4 are defined as i) including all enhancements presented in Section
3; ii) including only the Magnanti-Wong method [21] with the default branching rules in the SCIP 2.0.1
distribution; iii) using the branching rules described in Section 3.4 without the Magnanti-Wong method;
and iv) a standard Benders decomposition formulation, i.e. without the Magnanti-Wong method and
with the default branching rules. The expectation is that the Phase 1 runtimes are similar for the pairs
of results (i, ii) and (iii, iv), however it is possible to have fluctuations in the computational experiments.
We also expect that the Phase 2 runtimes are similar for the result pairs (i, iii) and (ii, iv). There is
a greater chance of a variability in the Phase 2 runtimes since the Magnanti-Wong method generates
different cuts to the standard Benders decomposition approach. The addition of Magnanti-Wong cuts
generate a different problem by the end of Phase 1, which affects the difficulty of the integer program
and the number of branches required.

We find that the runtimes for the RRTAP using all enhancements are significantly lower than when
none are used. This is to be expected, especially in regards to the branching rules, since the rules

included in the SCIP 2.0.1 distribution do not use any problem specific information. The inclusion of
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Figure 5: Runtime for the recoverable robust model. The dots represent the total runtime for each

parameter set.

the branching rules has the effect of reducing the amount of time spent in Phase 2 of the two-phase
algorithm. By using the Magnanti-Wong method, we are able to reduce the amount of time spent in
Phase 1 of the two-phase algorithm, however it does not provide a marked improvement in Phase 2
when run with the SCIP 2.0.1 branching rules, and in two cases it is worse. Even though solving the
auxiliary problem for the Magnanti-Wong method adds extra runtime to each iteration, it is clear that
this method genuinely improves the generated cuts. Figure 4 demonstrates that while each enhancement
can improve the runtimes for the algorithm, it is necessary to include all enhancements to achieve the
greatest runtime improvement.

While the enhancements developed for this algorithm have a significant effect on the runtimes, we
found that the parameters used can also have an affect. Figure 5 illustrates the runtimes required to
calculate the results presented in Table 3 for the RRTAP. In our experiments we limited the runtimes
to 3 hours. In the cases where the runtimes exceeded 3 hours, the model was terminated after the first
run of the Benders decomposition algorithm which completes after the 3 hour time limit. Given that
the Benders subproblems’ solutions, the upper bounds, are not strictly nonincreasing, the best solution
found during the runtime is used in the calculations of Table 3. In Table 3 we see that there is little
difference between the optimal solution at the completion of Phase 2 and the upper bound calculated at
the completion of Phase 1. Figure 5 shows that in some cases the time spent in Phase 2 attempting to
find the optimal solution, which is not always found, can be quite significant. In order to achieve a fast

solution that is close to optimal, one could simply complete just Phase 1 of the two-phase algorithm.

4.4 Investigation of constituent recovery costs

The recovery costs calculated from the evaluation of the proxy robust and RRTAP models can be broken

down into their constituent costs for swaps, delays and cancellations. Figure 6 presents this breakdown,
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Figure 6: Swap, cancellation and delay costs - comparison between Gronkvist, Phase 1 and Phase 2.

demonstrating the trade-offs that can occur when setting the model parameters. In Section 4.2 we have
demonstrated that the recoverable robust solution either equals or improves on the weighted recovery cost
of the proxy robust solution. Given that the model optimises the weighted recovery costs, it is possible
for the proxy robust solution to outperform the recoverable robust solution for individual recovery policy
costs. One such example is the swap costs with a penalty weight of ¢g° = 5000, where the number of
swaps in the proxy robust solution is lower than the recoverable robust solution. However, for the same
penalty weight of g° = 5000, the recoverable robust solution significantly outperforms the proxy robust
result for the delay costs. For other penalty weights, such as g° = 1000 and ¢g® = 2500, the results are
quite varied with the improvement being attributed to a decrease in swaps and delays respectively. This
is attributable to the minimum length of delay for an individual flight and its associated cost. Since the
flight delays are discretised to be every 30min from the original departure, the minimum cost of delay
is $75 x 30min = $2250. For the proxy robust solution, the tendency is to allow more swaps, rather
than to delay flights for penalty weights less than 2250, and for weights greater than 2250 to allow more
flight delays than swaps. Thus, in the case of the penalty weight of ¢g° = 5000 we find that the preferred
recovery policy for the proxy robust solution is to delay flights, so any improvement from the RRTAP
will be found through reducing the number of delayed flights.

In Table 3 it is possible to see that the greatest weighted improvement in the recovery costs occurs
when ¢° = 1000 and ¢g® = 2500. Above we have presented above the case where g° = 5000, the benefit is
attributable to a decrease in the total delay costs. This is combined with an increase in the total number
of swaps performed in the recovery process. The largest weighted recovery cost improvement occurs
when ¢° = 2500 and we see that this benefit is largely due to a reduction in the delay costs. While the

greatest improvement is in the delay costs, there is still an improvement in the swap costs. As mentioned
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above, we find that the improvement in both costs is due to the minimum cost of delay being close to
the penalty weight of g° = 2500. The result of decreased flight delays is particularly important since
this directly reduces the number of delay minutes experienced by passengers, which has a real effect on

the on-time performance of an airline.

4.5 Effect of flight copy increments

In our model we have used discrete flight copies to handle flight delays for the recovery subproblems. As
mentioned above we have used a delay copy increment of 30min for each flight copy, with a maximum
delay of 180 minutes. In Figure 7 we present the weighted recovery costs with the runtime for the RRTAP
using different delay increments with a penalty weight ¢° = 2500 and loss rate of 1.5. As expected, the
figure shows that as the delay copy increment decreases, resulting in a larger recovery flight network
due to more flight copies, the solution time increases. We also see that there is a great difference in the
weighted recovery costs that are calculated using different delay copy increments. Using discrete flight
copies in the recovery model has the effect of overestimating the recovery costs by forcing larger delays
than may be necessary. Comparing the resulting recovery costs between the smallest delay increment
in Figure 7, 15 minutes, and a delay increment of 30 minutes, we calculate the weighted recovery costs
of 25,995 and 29,563 respectively. This equates to a 13.73% overestimate of the recovery costs for the
given parameter sets. For each of the results in Figure 7 we have omitted the breakdown of the recovery
costs for brevity, however we will provide a concise description of our findings. By decreasing the delay
copy increment we see different results in recovery components of swaps, delays and cancellations: the
number of delayed flights and number of swaps increases, while the number of cancellations and delay

minutes decreases. Since there are now more delay options available we find a decrease in the number of
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cancellations. With the increase in the number of delayed flights and a decrease in the number of delayed
minutes, we see that the average delay per delayed flight decreases from 81.6 minutes to 63.9 minutes.
These results show that by using discrete flight copies we are overestimating the weighted recovery costs
for the model, however by changing the delay copy increment the resulting recovery solutions can change

quite dramatically.

5 Conclusions

In this paper we have presented a novel recoverable robustness model for the tail assignment problem.
We showed that the solutions to this model guarantee reduced recovery costs and have no increase in
planning costs. Further, our model has a full set of recovery decisions, including flight cancellations and
delays and aircraft rerouting. The sophisticated recovery subproblems create a complex mixed integer
program, which we are able to solve in a reasonable time frame using enhancement techniques. We
have formulated the RRTAP as a stochastic program drawing on solution methods such as Benders
decomposition. By solving this problem as a two-stage stochastic program, it is possible to separate the
planning and recovery tail assignment problems. This structure allows for the use of different recovery
algorithms and a wide range of different planning algorithms and methods which can be improved upon
using the RRTAP.

Through the use of Benders decomposition and column generation we have demonstrated that
RRTAP is able to be solved in an efficient way. The acceleration technique of the Magnanti-Wong
method [21] has been applied to the Benders decomposition formulation, which have provided a signifi-
cant improvement in the computational performance. Further, we have improved the column generation
process for the Benders decomposition master problem by introducing a branching technique to eliminate
symmetry, branching on an aircraft pair and starting flight.

We have compared the results of the RRTAP against a proxy robust solution developed using a
connection cost function presented in Gronkvist [15]. We found this connection cost function provided a
simple, but effective, way to introduce robustness into the tail assignment problem. Through the use of
our recovery algorithm, we have evaluated this connection cost function to demonstrate the recoverability
of the planning tail assignment solution. Further, using this connection cost function in the planning
stage of our recoverable robustness algorithm we have been able to develop an even lower cost recoverable
planned solution compared to the Gronkvist solution.

With the use of the two-phase algorithm for solving the Bender decomposition problem we have found
that the integral master problem solution using the cuts added by the completion of Phase 1 provides
a good upper bound on the optimal solution. A large proportion of the runtimes are spent in Phase 2
adding cuts to improve the lower bound towards the Phase 1 upper bound. Terminating the algorithm

at the completion of Phase 1 results in near optimal solutions with very fast computational times.
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Our results have been presented with a range of values for airline specific parameters, the swap
penalties and lost revenue rates. The method used to assign costs to swaps, delays and cancellations can
have varied effects on the cost benefits from the RRTAP. We demonstrated that due to the value of the
minimum delay cost and the penalty weight there can be a tendency towards greater swaps or delays
in the final solution. By presenting a range of values we have demonstrated that a trade-off between
different recovery costs can be achieved. This allows each airline to value the delays, cancellations and
swaps differently depending on their individual situations.

A common method of reducing the complexity of a recovery model is to use discrete flight copies to
handle flight delays. In our analysis we compared the results of using different number of flight copies,
which has shown that the level of overestimation of recovery costs can be high. Further, we find that
changing the number of flight copies has an effect on minimum possible delay cost and hence affects the
composition of delays and swaps in the final solution. With the discovery of a good upper bound at the
end of Phase 1 to obtain a richer result for the RRTAP using a greater number of flight copies without
substantial increases in runtimes.

In future work, we aim to extend the recoverable robustness technique for airline problems. With our
current formulation it is possible to integrate one or more airline planning stages with the tail assignment
problem. Given the high cost of crew to the airline, this is a potentially important aspect to add to this
problem. Also, in a recovery situation it is important to monitor passenger flow in the network. Explicit

modelling of passengers in the recovery models could provide a more robust set of results.
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